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Abstract: This paper deals with the Hermite-Fejér interpolation problem on the
unit circle with the nodal system containing the vertically projected zeros of Ja-
cobi’s polynomial with boundary points on the unit circle. We worked upon three
nodal structures throughout this paper and obtained rate of convergence for each
case. Moreover, we did a comparison of all the three cases and provided some
important conclusions.
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1. Introduction
The study of Hermite-Fejér interpolation has drawn interest of many researchers

in past years and has been a subject of investigation for a quite long time. Earlier
in 1974, [Saxena 12] showed Hermite-Fejér interpolation process for the function on
the nodes given in the paper of [Berman 3], converged uniformly to function in [-
1,1]. [Daruis and Gonzalez-Vera 9] in 2001 extended Fejér’s classical result onto the
unit circle and studied the convergence of Hermite-Fejér interpolation polynomial
by using Laurent polynomial.

After a decade, in 2011 [Berriochoa et al. 4] came out with some improvements
to the Hermite-Fejér interpolation on the unit circle. In another paper, [Berrio-
choa et al. 5] dealt with the order of convergence of the Laurent polynomial of
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Hermite-Fejér interpolation on the unit circle. Supremum norm of the error was
not only obtained for analytic functions but also for their corresponding asymptotic
constants.

Series of recent research works by [Berriochoa et al. 6, 7, 8], [Mastroianni et al.
11], [Bahadur & Varun 1, 2] and [Mathur & Mathur 10] motivated us to consider
a problem of Hermite-Fejér interpolation for the non-uniform nodes on the unit
circle. Let Zn = {zk; k = 0(1)2n+ 1} satisfying{

z0 = 1, z2n+1 = −1, zk = cosθk + isinθk, zn+k = −zk, k = 1(1)2n
}
,

be the vertical projections of zeros of (1−x2)P (α,β)
n (x), where xk = cosθk, k = 1(1)n

are zeros of Jacobi polynomial P
(α,β)
n (x) of degree n such that

1 > x1 > x2 > ... > xn > −1.

In this paper, we took three cases to study our problem.
Case I : Interpolatory polynomial Fn(z) of degree ≤ 4n − 1 satisfying following
conditions. {

Fn(f, zk) = αk, k = 1(1)2n,

F
′
n(f, zk) = 0, k = 1(1)2n.

(1.1)

Case II : Interpolatory polynomial Gn(z) of degree ≤ 4n + 1 satisfying following
conditions. {

Gn(f, zk) = βk, k = 0(1)2n+ 1,

G
′
n(f, zk) = 0, k = 1(1)2n.

(1.2)

Case III : Interpolatory polynomial Hn(z) of degree ≤ 4n + 3 satisfying following
conditions. {

Hn(f, zk) = γk , k = 0(1)2n+ 1,

H
′
n(f, zk) = 0, k = 0(1)2n+ 1.

(1.3)

The paper has been organised in a following manner. Section 2 is assigned to pre-
liminaries. In section 3, we give explicit formulae for the interpolatory polynomial.
Section 4 is devoted to the estimates, which comes in handy to determine the rate
of convergence of the interpolatory polynomials covered in section 5. To sum up,
we have included a conclusion section to view the valuable aspect of this research.

2. Preliminaries
In this section, we provide the following well known results, which we shall use.

W (z) =
2n∏
k=1

(z − zk) = KnP
(α,β)
n

(
1 + z2

2z

)
zn, (2.1)
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Kn = 22nn!
Γ(α + β + n+ 1)

Γ(α + β + 2n+ 1)
, (2.2)

R(z) = (z2 − 1)W (z). (2.3)

The differential equation satisfied by P
(α,β)
n (x) is

(1−x2)P (α,β)
′′

n (x)+[β−α− (α+β+2)x]P (α,β)
′

n (x)+n(n+α+β+1)P (α,β)
n (x) = 0,

(2.4)

where x =
1 + z2

2z
.

The fundamental polynomials of Lagrange interpolation on the zeros of W (z)and
R(z) is respectively given by (2.5) and (2.6)

L1k(z) =
W (z)

(z − zk)W ′(zk)
, k = 1(1)2n (2.5)

Lk(z) =
R(z)

(z − zk)R′(zk)
, k = 0(1)2n+ 1 (2.6)

For −1 ≤ x ≤ 1,
(1− x2)1/2 | P (α,β)

n (x) |= O(nα−1), (2.7)

| P (α,β)
n (x) |= O(nα), (2.8)

(1− x2k)−1 ∼

(
k

n

)−2
, (2.9)

| P (α,β)′

n (xk) |∼ k−α−
3
2nα+2. (2.10)

For more details, refer [Szegö 13].

3. Explicit Representation of Interpolatory Polynomial
Referring to the Case I, II and III mentioned in (1.1) - (1.3), we give following

theorems.

Theorem 3.1. Let Fn(z) be a polynomial satisfying (1.1), given by

Fn(z) =
2n∑
k=1

αkAk(z), (3.1)
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where Ak(z) is a unique polynomial of degree ≤ 4n− 1, such that

Ak(z) = L2
1k(z)

{
1− 2(z − zk)L′1k(zk)

}
. (3.2)

satisfying the conditions {
Ak(zj) = δkj, j, k = 1(1)2n,

A′k(zj) = 0, j, k = 1(1)2n.
(3.3)

Theorem 3.2. Let Gn(z) be a polynomial satisfying (1.2), given by

Gn(z) =
2n+1∑
k=0

βkBk(z), (3.4)

where Bk(z) is a unique polynomial of degree ≤ 4n+ 1, such that
For k = 1(1)2n

Bk(z) = −

(
L′1k(zk) + L′k(zk)

W ′(zk)

)
W (z)Lk(z) + L1k(z)Lk(z), (3.5)

For k = 0, 2n+ 1

Bk(z) =
W (z)Lk(z)

W (zk)
, (3.6)

satisfying the conditions{
Bk(zj) = δkj, j, k = 0(1)2n+ 1,

B′k(zj) = 0, j = 1(1)2n, k = 0(1)2n+ 1.
(3.7)

Theorem 3.3. Let Hn(z) be a polynomial satisfying (1.3), given by

Hn(z) =
2n+1∑
k=0

γkCk(z), (3.8)

where Ck(z) is a unique polynomial of degree ≤ 4n+ 3, such that

Ck(z) = L2
k(z)

{
1− 2(z − zk)L′k(zk)

}
, (3.9)

satisfying the conditions{
Ck(zj) = δkj, j, k = 0(1)2n+ 1,

C ′k(zj) = 0, j, k = 0(1)2n+ 1.
(3.10)
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Proof of theorem 3.1. Let

Ak(z) = akW (z)L1k(z) + L2
1k(z), (3.11)

where Ak(z) is atmost of degree 4n − 1 satisfying the conditions given in (3.3),
provides us with

ak =
−2L′1k(zk)

W ′(zk)
. (3.12)

Substituting (2.1), (2.5) and (3.12) in (3.11), the theorem follows.
Proof of theorem 3.2. For k = 1(1)2n, Let

Bk(z) = bkW (z)Lk(z) + L1k(z)Lk(z), (3.13)

Using conditions given in (3.7), we get

bk = −
(L′1k(zk) + L′k(zk)

W ′(zk)

)
, (3.14)

For k = 0, 2n+ 1
Let

Bk(z) = b1kW (z)Lk(z), (3.15)

Using (3.7), we have

b1k =
1

W (zk)
. (3.16)

From (3.13), (3.14), (3.15) and (3.16), the theorem follows.
Proof of theorem 3.3. Proceed similarly as in proof of Theorem 3.1.

4. Estimates of Fundamental Polynomials

Lemma 4.1. Let Ak(z) be given by (3.2), then

2n∑
k=1

| Ak(z) | ≤


C log n, −1 < α ≤ −1

2
,

Cn
1
2
+α log n, −1

2
< α ≤ 1

2
,

Cn
1
2
+α, α > 1

2
,

(4.1)

where C is a constant independent of n and z.

Lemma 4.2. Let Bk(z) be given by (3.5) and (3.6), then

2n+1∑
k=0

| Bk(z) | ≤


C log n, −1 < α ≤ 0,

Cn2α log n, 0 < α ≤ 1
2
,

Cn2α, α > 1
2
,

(4.2)
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where C is a constant independent of n and z.

Lemma 4.3. Let Ck(z) be given by (3.9), then

2n+1∑
k=0

| Ck(z) | ≤


C log n, −1 < α ≤ 1

2
,

Cn2α−1 log n, 1
2
< α ≤ 1,

Cn2α−1, α > 1,

(4.3)

where C is a constant independent of n and z.
Proof of the lemma 4.1.

| Ak(z) |=
∣∣∣L2

1k(z)− 2L′1k(zk)L1k(z)W (z)

W ′(zk)

∣∣∣, (4.4)

2n∑
k=1

| Ak(z) | ≤ max | L1k(z) |
2n∑
k=1

| L1k(z) | +2
2n∑
k=1

| L′1k(zk) || L1k(z) || W (z) |
| W ′(zk) |

,

(4.5)
Using (2.5), (2.7), (2.9) and (2.10), we have

2n∑
k=1

| Ak(z) |≤ C1

2n∑
k=1

1

k−α+
1
2

+ C2

2n∑
k=1

1

k−2α+1
, (4.6)

where C1 and C2 are constants independent of n and z. Further calculations give
our desired lemma.
Proof of the lemma 4.2. Let

2n+1∑
k=0

| Bk(z) |≤ I1 + I2, (4.7)

where

I1 ≤
2n∑
k=1

| L′1k(zk) || Lk(z) || W (z) |
| W ′(zk) |

+
2n∑
k=1

| L′k(zk) || Lk(z) || W (z) |
| W ′(zk) |

(4.8)

+
2n∑
k=1

| L1k(z) || Lk(z) | . (4.9)

Using (2.1), (2.5), (2.6), (2.7), (2.9) and (2.10), we have

I1 ≤ C logn (−1 < α ≤ 0), (4.10)
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I2 ≤
∑

k=0,2n+1

| Lk(z) || W (z) |
| W (zk) |

, (4.11)

Using (2.2), (2.6), (2.8) and (2.10), we have

I2 ≤ C (−1 < α ≤ 0), (4.12)

Combining (4.9) and (4.11), after a little computations for different ranges of α,
the lemma follows.
Proof of the lemma 4.3. Proceed similarly as in proof of Lemma 4.1.

5. Convergence

Remark: Let f(z) be continuous for | z |≤ 1 and analytic for | z |< 1 and
f (r)ε Lip q, q > 0, then the sequence {Fn(z)} converges uniformly to f(z) in | z |≤
1, which follows from (5.5) as

ωr(f, n
−1) = O(n−r+1−q) {q > 3

2
+ α− r}, (5.1)

where ωr(f, n
−1) be the rth modulus of continuity of f(z), such that[

r − 3

2
≤ α < r − 1

2

]
, where r = 2, 3, ... (5.2)

To prove the Theorem 5.1, we shall need following.
Let f(z) be continuous for | z |≤ 1 and analytic for | z |< 1. Then, there exists a
polynomial Ln(z) of degree ≤ 4n− 1 satisfying Jackson’s inequality.

| f(z)− Ln(z) |=


Cω(f, n−1), −1 < α ≤ −1

2
,

Cω2(f, n
−1), −1

2
< α ≤ 1

2
,

Cωr(f, n
−1), α > 1

2
,

(5.3)

where C is a constant independent of n and z.

Theorem 5.1. Let f(z) be continuous for | z |≤ 1 and analytic for | z |< 1. Then
Fn(z) defined by

Fn(z) =
2n∑
k=1

f(zk)Ak(z). (5.4)

satisfies the relation

| Fn(z)− f(z) |=


O(ω(f, n−1) log n); −1 < α ≤ −1

2
,

O(ω2(f, n
−1) log n); −1

2
< α ≤ 1

2
,

O(ωr(f, n
−1)n

1
2
+α); α > 1

2
,

(5.5)



90 South East Asian J. of Mathematics and Mathematical Sciences

where ωr(f, n
−1) be the rth modulus of continuity of f(z).

Proof. Since Fn(z) be the uniquely determined polynomial of degree ≤ 4n−1 and
the polynomial Ln(z) satisfying (5.3) can be expressed as

Ln(z) =
2n∑
k=1

Ln(zk)Ak(z), (5.6)

Then

| Fn(z)− f(z) | ≤ | Fn(z)− Ln(z) | + | Ln(z)− f(z) |, (5.7)

| Fn(z)− f(z) | ≤
2n∑
k=1

| f(zk)− Ln(zk) || Ak(z) | + | Ln(z)− f(z) | . (5.8)

Using equations (5.3), (5.4) and Lemma 4.1, we have Theorem 5.1.

Theorem 5.2. Let f(z) be continuous for | z |≤ 1 and analytic for | z |< 1. Then
Gn(z) defined by

Gn(z) =
2n+1∑
k=0

f(zk)Bk(z), (5.9)

satisfies the relation

| Gn(z)− f(z) |=


O(ω(f, n−1) log n), −1 < α ≤ 0,

O(ω2(f, n
−1) log n), 0 < α ≤ 1

2
,

O(ωr(f, n
−1)n2α), α > 1

2
,

(5.10)

where ωr(f, n
−1) be the rth modulus of continuity of f(z).

Theorem 5.3. Let f(z) be continuous for | z |≤ 1 and analytic for | z |< 1. Then
Hn(z) defined by

Hn(z) =
2n+1∑
k=0

f(zk)Ck(z), (5.11)

satisfies the relation

| Hn(z)− f(z) |=


O(ω(f, n−1) log n), −1 < α ≤ 1

2
,

O(ω2(f, n
−1) log n), 1

2
< α ≤ 1,

O(ωr(f, n
−1)n2α−1), α > 1,

(5.12)
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where ωr(f, n
−1) be the rth modulus of continuity of f(z).

Proof of Theorem 5.2 and Theorem 5.3 can be obtained proceeding similarly as in
Theorem 5.1.

6. Conclusion
This paper contains a problem involving three nodal structures different from

each other in a perspective of inclusion of the end points(±1) on the real line. We
can conclude from all the calculations done in this paper that increase in nodal
points gradually increase the degree of the interpolatory polynomial formed, but
the convergence came out to be more stronger in Case I. Thus, for certain modulus
of continuity, the interpolatory polynomial in the Case I, where function values and
the derivative values are prescribed on Zn excluding end points ±1, can survive
through high range of α for convergence purpose as compared to interpolatory
polynomials obtained for Case II and Case III.
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[13] Szegö, G., Orthogonal Polynomials, Amer. Math. Soc. Coll., Vol., 23(4)
(1975).


